国产性生交xxxxx免费-国产中文字幕-啊灬啊灬啊灬快灬高潮了,亚洲国产午夜精品理论片在线播放 ,亚洲欧洲日本无在线码,色爽交视频免费观看

鍋爐信息網 > 鍋爐知識 > 鍋爐學習

工業蒸汽量預測2

發布時間:

1.數據包引入import matplotlib.pyplot as pltnimport seaborn as snsnimport pandas as pdnimport numpy as npnfrom scipy impo

1.數據包引入

import matplotlib.pyplot as pltnimport seaborn as snsnimport pandas as pdnimport numpy as npnfrom scipy import statsnfrom sklearn.model_selection import train_test_splitnfrom sklearn.model_selection import GridSearchCV, RepeatedKFoldnfrom sklearn.model_selection import cross_val_score, cross_val_predict, KFoldnfrom sklearn.metrics import make_scorer, mean_squared_errornfrom sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNetnfrom sklearn.svm import LinearSVR, SVRnfrom sklearn.neighbors import KNeighborsRegressornfrom sklearn.ensemble import RandomForestRegressornfrom sklearn.ensemble import GradientBoostingRegressor, AdaBoostRegressornfrom xgboost import XGBRegressornfrom sklearn.preprocessing import PolynomialFeatures, MinMaxScaler, StandardScaler

2.數據載入

pd.set_option("display.max_rows", None) # None時不限制數量npd.set_option("display.max_columns", None)npd.set_option("display.width", 1000)nplt.rcParams["axes.unicode_minus"] = Falsensns.set_style("white", {"font.sans-serif": ["simhei", "Arial"]}) # 解決中文不能顯示問題nnndata_train = pd.read_csv("./zhengqi_train.txt", sep="t", encoding="utf-8")ndata_test = pd.read_csv("./zhengqi_test.txt", sep="t", encoding="utf-8")ndata_train["oringin"] = "train"ndata_test["oringin"] = "test"ndata_all = pd.concat([data_train, data_test], axis=0, ignore_index=True)n# print(data_all.head())n# print(data_all.tail())

3.數據探查

3.1訓練集和測試集數據分布

for col in data_all.columns[0:-2]:n g = sns.kdeplot(data_all[col][(data_all["oringin"] == "train")], color="Red", shade=True)n g = sns.kdeplot(data_all[col][(data_all["oringin"] == "test")], color="Blue", shade=True, ax=g)n g.set_xlabel(col)n g.set_ylabel("Frequency")n g.legend(["train", "test"])n plt.show()

刪除特征V5,V9,V11,V17,V22,V28

data_all.drop(["V5", "V9", "V11", "V17", "V22", "V28"], axis=1, inplace=True)

再看下數據分布情況:

data_train1 = data_all[data_all["oringin"] == "train"].drop("oringin", axis=1)nfcols = 2nfrows = len(data_train1.columns)nplt.figure(figsize=(5 * fcols, 4 * frows))ni = 0nfor col in data_train1.columns:n i += 1n ax = plt.subplot(frows, fcols, i)n sns.regplot(n x=col,n y="target",n data=data_train,n ax=ax,n scatter_kws={"marker": ".", "s": 3, "alpha": 0.3},n line_kws={"color": "k"},n )n plt.xlabel(col)n plt.ylabel("target")n i += 1n ax = plt.subplot(frows, fcols, i)n sns.distplot(data_train[col].dropna(), fit=stats.norm)n plt.xlabel(col)nplt.show()

# 找出相關程度nplt.figure(figsize=(20, 16)) # 指定繪圖對象寬度和高度ncolnm = data_train1.columns.tolist() # 列表頭nmcorr = data_train1[colnm].corr(method="spearman") # 相關系數矩陣,即給出了任意兩個變量之間的相關系數nmask = np.zeros_like(mcorr, dtype=np.bool) # 構造與mcorr同維數矩陣 為bool型nmask[np.triu_indices_from(mask)] = True # 角分線右側為Truencmap = sns.diverging_palette(220, 10, as_cmap=True) # 返回matplotlib colormap對象ng = sns.heatmap(n mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt="0.2f"n) # 熱力圖(看兩兩相似度)nplt.show()

將與target的相關性絕對值<0.1的列剔除:

# Threshold for removing correlated variablesnthreshold = 0.1n# Absolute value correlation matrixncorr_matrix = data_train1.corr().abs()ndrop_col = corr_matrix[corr_matrix["target"] < threshold].indexnprint(drop_col)ndata_all.drop(drop_col, axis=1, inplace=True)nprint(data_all.columns)

標準正態化:

# normalise numeric columnsncols_numeric = list(data_all.columns)ncols_numeric.remove("oringin")nnn# 計算標準分數ndef scale_minmax(col):n return (col - col.min()) / (col.max() - col.min())nnnscale_cols = [col for col in cols_numeric if col != "target"]ndata_all[scale_cols] = data_all[scale_cols].apply(scale_minmax, axis=0)nprint(data_all[scale_cols].describe())

Box-Cox變換:

# Check effect of Box-Cox transforms on distributions of continuous variablesnfcols = 6nfrows = len(cols_numeric) - 1nplt.figure(figsize=(4 * fcols, 4 * frows))ni = 0nfor var in cols_numeric:n if var != "target":n dat = data_all[[var, "target"]].dropna()n i += 1n plt.subplot(frows, fcols, i)n sns.distplot(dat[var], fit=stats.norm)n plt.title(var + " Original")n plt.xlabel("")nn i += 1n plt.subplot(frows, fcols, i)n _ = stats.probplot(dat[var], plot=plt)n plt.title("skew=" + "{:.4f}".format(stats.skew(dat[var])))n plt.xlabel("")n plt.ylabel("")nn i += 1n plt.subplot(frows, fcols, i)n plt.plot(dat[var], dat["target"], ".", alpha=0.5)n plt.title("corr=" + "{:.2f}".format(np.corrcoef(dat[var], dat["target"])[0][1]))nn i += 1n plt.subplot(frows, fcols, i)n trans_var, lambda_var = stats.boxcox(dat[var].dropna() + 1)n trans_var = scale_minmax(trans_var)n sns.distplot(trans_var, fit=stats.norm)n plt.title(var + " Tramsformed")n plt.xlabel("")nn i += 1n plt.subplot(frows, fcols, i)n _ = stats.probplot(trans_var, plot=plt)n plt.title("skew=" + "{:.4f}".format(stats.skew(trans_var)))n plt.xlabel("")n plt.ylabel("")nn i += 1n plt.subplot(frows, fcols, i)n plt.plot(trans_var, dat["target"], ".", alpha=0.5)n plt.title(n "corr=" + "{:.2f}".format(np.corrcoef(trans_var, dat["target"])[0][1])n )nplt.show()

變換:

for col in cols_transform:n data_all.loc[:, col], _ = stats.boxcox(data_all.loc[:, col] + 1)n"""print(data_all.target.describe())nplt.figure(figsize=(12, 4))nplt.subplot(1, 2, 1)nsns.distplot(data_all.target.dropna(), fit=stats.norm)nplt.subplot(1, 2, 2)n_ = stats.probplot(data_all.target.dropna(), plot=plt)nplt.show()"""

轉換:

# Log Transform SalePrice to improve normalitynsp = data_train.targetndata_train.target1 = np.power(1.5, sp)nprint(data_train.target1.describe())

for column in data_all.columns[0:-2]:n g = sns.kdeplot(n data_all[column][(data_all["oringin"] == "train")], color="Red", shade=Truen )n g = sns.kdeplot(n data_all[column][(data_all["oringin"] == "test")],n ax=g,n color="Blue",n shade=True,n )n g.set_xlabel(column)n g.set_ylabel("Frequency")n g = g.legend(["train", "test"])n plt.show()

精選推薦

  • 催化燃燒設備供應商
    催化燃燒設備供應商

    催化燃燒設備供應商,催化燃燒處理裝置廠家,本裝置是采用廢氣先進入噴淋塔過濾——干式過濾—-蜂窩活性碳吸附—脫附再生——催化燃

  • 該不該有模具供應商
    該不該有模具供應商

    今天紅姐又來跟我探討供應商的管理問題了。故事是這樣的:供應商來料不良,原因是模具問題。而那個模具是我們找的一家模具供應商做的

  • 什么牌子高壓鍋好,高壓鍋哪個牌子好,高壓鍋什么牌子好,高壓鍋哪個品牌好
    什么牌子高壓鍋好,高壓鍋哪個牌子好,高

    1蘇泊爾 雙重安全閥門 高壓鍋雙重安全閥,防燙把手,復合底。這款高壓鍋擁有雙重安全閥門,更好的保證使用安全。搭載防燙傷把手,方便起

  • 高壓鍋啥牌子好,高壓鍋哪個牌子的好,什么高壓鍋牌子好,高壓鍋推薦選購指南
    高壓鍋啥牌子好,高壓鍋哪個牌子的好,什

    1、雙喜階梯型復底高壓鍋推薦理由:高壓鍋滿足上蒸下煮,飯菜同時進行,方便快速,有效提升烹飪效率。多重安全防護,安全系數較高,家人使用

0